

Anti-Mouse CD86 (B7-2) PE-Cyanine7

Catalog Number: 08912-77

RUO: For Research Use Only. Not for use in diagnostic procedures.

Product Information

Clone: GL-1 (GL1)

Format/Conjugate: PE-Cyanine7

 $\textbf{Concentration:}\ 0.2\ mg/mL$

Reactivity: Mouse **Laser:** Blue (488nm)

Peak Emission: Not Applicable **Peak Excitation:** Not Applicable

Filter: Not Applicable

Brightness (1=dim,5=brightest): Not Applicable

Isotype: Rat IgG2a, kappa

Formulation: Phosphate-buffered aqueous solution, ≤0.09% Sodium azide, may contain carrier protein/stabilizer, ph7.2.

Storage: Product should be kept at 2-8°C and protected from prolonged exposure to light.

Applications: FC

Description

The GL-1 monoclonal antibody reacts specifically with the mouse B7-2 (also known as CD86), a costimulatory molecule expressed by B and T lymphocytes, macrophages (thioglycollate-induced from peritoneum), astrocytes and dendritic cells. The memory CD4+ T lymphocytes express CD86 (as mRNA and protein). CD86, and the B7-1 (CD 80) molecule, are ligands for CD152 and CD28, and influence the costimulatory interactions between lymphocytes B and T. B7-2 is also involved in the mouse natural killer cell-mediated cytotoxicity.

The GL-1 antibody blocks the mixed lymphocyte reaction (MLR) and inhibits the T-cells stimulation by antigen-presenting cells. Mixtures of anti-B7-1 antibody and GL-1 were reported to inhibit the interaction between CD125 and its ligand with the in vivo priming of cytotoxic T lymphocytes.

Preparation & Storage

The product should be stored undiluted at 4°C and should be protected from prolonged exposure to light. Do not freeze. The monoclonal antibody was purified utilizing affinity chromatography and unreacted dye was removed from the product.

Application Notes

The antibody has been analyzed for quality through the flow cytometric analysis of the relevant cell type. For flow cytometric staining, the suggested use of this reagent is ≤ 0.25 ug per million cells in 100 μ l volume. It is recommended that the reagent be titrated for optimal performance for each application.

References

1. Hathcock, K. S., Laszlo, G., Dickler, H. B., Bradshaw, J., Linsley, P., Hodes, R. J. (1993). Identification of an alternative CTLA-4 ligand costimulatory for T cell activation.; Science,;262(5135), 905-907.

2. Inaba, K., Witmer-Pack, M., Inaba, M., Hathcock, K. S., Sakuta, H., Azuma, M., ... Steinman, R. M. (1994). The tissue distribution of the B7-2 costimulator in mice: abundant expression on dendritic cells in situ and during maturation in vitro.; The Journal of experimental medicine,; 180(5), 1849-1860.

3. Hathcock, K. S., Laszlo, G., Pucillo, C., Linsley, P., Hodes, R. J. (1994). Comparative analysis of B7-1 and B7-2 costimulatory ligands: expression and function.;The Journal of experimental medicine,;180(2), 631-640.					
	7			222 2242 15 242 222 2	24.0